摘要

社交媒体签到数据中蕴含着大量的用户活动信息。理解社交媒体用户的活动和行为类型,对探索人类的移动性和行为模式等有着重要意义。提出了一种针对新浪微博(简称为微博)的用户活动分类方法,结合图像表达和时空数据分类技术,识别微博签到数据所代表的用户活动类型。首先,根据兴趣点属性信息将微博签到数据所代表的用户活动分为餐饮、生活服务、校园、户外、娱乐、出行6大类;然后,基于卷积神经网络和K近邻分类方法,融合签到数据中的图像场景信息与时空信息,对微博用户的活动行为进行分类。实验结果表明,所提方法能够显著提高微博用户活动类型识别的准确性,为精确探索人类行为活动提供更加有效的数据支持。

全文