摘要

针对传统的合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)在类别区域重合的数据集应用时,可能产生多个更接近多数类的人工样例,甚至突破类别边界,从而影响整体分类性能的情况,提出了一种最近三角区域的SMOTE方法,使合成的人工样例只出现在少数类样例的最近三角区域内部,并且删除掉距离多数类更近的合成样例,从而使生成的样例更接近少数类,且不突破原始的类别边界。实验分别在人工数据集和改进的UCI数据集上进行,并和原始的SMOTE方法分别在G-mean和F-value的评价指标上进行了对比。实验结果验证了改进的SMOTE方法在类别区域有重合的数据集上要优于原始SMOTE方法。

  • 单位
    沧州师范学院; 沧州职业技术学院