摘要
红外检测技术具有受环境负面影响小、抗外界干扰能力强等优势,在众多领域皆有极为重要的应用价值。然而,由于红外小目标存在缺少明显的可用信息、边界模糊等问题,对其检测的难度较大,因而成为目标检测领域的研究热点与难点。本文通过分析困扰红外小目标检测研究发展的难题所在,首先就目前针对其检测的传统算法原理进行简要说明。其次,详细阐述了基于深度学习的多类型红外小目标检测算法,并对相关算法的分类、评估指标、相关数据集等多方面内容进行了介绍,随之以实例说明对当前算法改进的有效方式。最后,归纳总结现有检测算法的优缺点,探讨了红外小目标检测研究领域的未来发展趋势,即向高精度、高实时性、强鲁棒性、低复杂度的算法方面深入研究。
- 单位