为了将传统的决策树无法管理的、由各种分类算法所发现的大量的有意义的规则进行有效的存储、剪裁和使用 ,提出了广义决策树结构。它将传统决策树的结构进行扩展 ,能够以较少的存储代价管理所发现的所有分类规则 ,且易于表达规则之间的关系。提出了有效的优化策略。以此树为基础 ,将决策树分类算法与基于关联规则的分类算法进行了概括统一 ,并提出了相应的算法。实验结果证明 ,广义决策树克服了传统决策树的缺点 ,并且适宜于维护、剪裁以及快速搜索大量的分类规则