基于趋势特征的风电功率爬坡事件检测方法

作者:张颖超; 宗阳*; 邓华; 成金杰; 章璇
来源:电测与仪表, 2020, 57(18): 122-132.
DOI:10.19753/j.issn1001-1390.2020.18.020

摘要

风电爬坡事件是风功率波动严重的小概率事件,因此在大数据中快速检测出爬坡事件十分关键。为提高爬坡事件的检测效率,根据爬坡事件蕴含显著的趋势信息,提出一种基于SDT和趋势标记相结合的风电爬坡事件检测方法。采用改进的旋转门算法(SDT)对原始风电功率数据进行分段趋势提取,预提取出可能存在的爬坡事件。为避免漏检、处理不重要的分段,引入趋势标记的方法。根据提出的爬坡检测方法,对上海某风场的数据进行爬坡检测试验。结果表明,对爬坡事件进行分段提取趋势既缩短了爬坡检测时间又提高了爬坡检测精度,具有实际意义。

全文