摘要

激光点云语义分割是自动驾驶系统中道路场景感知的重要分支。虽然主流方法将点云转换为规则的二维图像或笛卡尔栅格进行处理,减少因点云非结构化所带来的计算量,但二维图像方法不可避免地改变点云的三维几何拓扑结构,而笛卡尔栅格忽略了室外激光点云的密度不一致性,从而限制了包括行人和自行车等小物体的语义分割能力。因此,本文中提出了一种基于三维锥形栅格和稀疏卷积的激光点云语义分割方法,利用锥形栅格分区解决了点云的稀疏性和密度不一致的问题;为提高模型推理速度,设计了重参数化三维稀疏卷积网络。在SemanticKITTI和nuScenes两个大规模数据集上对所提方法进行评估。结果表明,与目前最新的点云分割方法相比,所提方法的平均交并比分别提升了1.3%和0.8%,尤其对小物体识别有显著的提升。

全文