摘要

[目的/意义]通过构建在线健康社区用户画像,解释不同用户群体的情感差异和特征,以掌握社区用户情感表达规律,推动在线健康社区的信息支持与情感支持功能建设。[方法/过程]首先,分析建立用户画像的目的,结合在线健康社区的数据特点建立包含基本信息、情感、主题和信息行为特征的用户画像概念模型。其次,确定各用户的标签属性,对标签属性进行抽取。最后,结合情感标签对用户角色进行划分,利用具有噪声的基于密度的空间聚类方法(Density-Based Spatial Clustering of Applications with Noise, DBSCAN)实现了用户画像并分析不同角色的画像特征。[结果/结论]提出的方法可以有效生成贴近用户原貌的画像并识别用户情感表达特征。通过实例分析挖掘出焦虑型、愤怒型、祈祷型、乐观型和悲哀型等5类社区用户群,各用户群体在性别、年龄、影响力、活跃度和兴趣主题方面均表现出不同的情感特征差异。