摘要

为了减少协同过滤算法存在的噪音数据以及数据稀疏性问题,提高算法准确性,本文提出一种基于信息熵和改进相似度的协同过滤算法,使用用户信息熵模型来判断噪音数据,排除噪音数据对实验结果的干扰;使用面向稀疏数据的改进相似度计算方法,使用全部评分数据而不是依靠共同的评分项来计算,对缓解稀疏数据对推荐结果的精确性影响有很大帮助。实验结果表明,该算法能在一定程度上排除噪音数据对结果的影响,缓解数据稀疏对推荐结果精确性的干扰,提高该推荐算法的精确性,且缓解了传统推荐系统算法中常见的一些问题,与传统的协同过滤算法相比,该算法的精确性更高。