摘要

针对传统模糊C均值聚类算法(FCM)过度依赖初始中心且易陷入局部最优等问题,提出一种基于上下文人工蜂群的模糊C均值聚类算法(CABCFCM)。首先,引入人工蜂群算法,用来确定FCM算法的初始聚类中心;其次,采用邻域半径和高斯扰动提升人工蜂群算法的局部搜索能力,并引入上下文多臂赌博机提升算法开发能力;最后,将CABCFCM应用到广告分发业务的推荐模型上。仿真实验结果表明,其准确率明显更高、聚类效果更佳。