摘要

多语言文本的情感分析是情感分析领域的重要问题之一,而现有的情感分析方法着重于对单语言文本的研究.本文针对中英混合文本提出了一种细粒度情感分析模型,通过基于大规模语料的预训练语言模型得到上下文语义相关的词向量,将词向量输入双向LSTM网络学习文本的情感表征,使用多语言注意力机制分别针对单语和双语文本提取关键情感表征,最终通过并行融合的方式提升情感分类效果.本文使用NLPCC2018多语言文本情绪分析任务数据集进行细粒度情感分析,对比评测任务中的最好结果,本文模型得到的宏平均F1值提高至0. 581,表明了本文方法的有效性.