伴随着互联网技术的快速发展和应用拓展,三网(因特网、电信网、广播电视网)融合为传统广播电视媒介带来了发展机遇。但随着数据规模的增长,现有推荐算法对多"目录"广播电视用户精准推荐的效果并未达到预期要求,具有较为明显的不足。本文针对用户之间的相似关系和产品之间的相似度,分别用皮尔逊相关系数、基于TF-IDF的余弦相似度与协同推荐构建了2种可以对新型广播电视用户精准推荐的算法流程,并能够得到产品的准确分类与精准投放。