摘要
压缩感知是一种新型的信号采样及重构理论,高效的信号重构算法是压缩感知由理论转向实际应用的枢纽。为了更精确地重构出原始稀疏信号,本文提出一种基于二次筛选的回溯广义正交匹配追踪算法。首先采用内积匹配准则选出较大数目的相关原子,提高原子的利用率。其次利用广义Jaccard系数准则对已选出的原子进行二次筛选,得到最匹配的原子,优化原子选取方式。实验结果表明,在不同稀疏度和观测值下进行信号重构,相比于回溯广义正交匹配追踪算法、正交匹配追踪算法及子空间追踪算法,本文算法在重构误差及重构成功率方面有较大的优越性。
- 单位