基于级联端对端深度架构的交通标志识别方法

作者:樊星; 沈超; 徐江; 连心雨; 刘占文
来源:计算机测量与控制, 2019, 27(04): 143-148.
DOI:10.16526/j.cnki.11-4762/tp.2019.04.033

摘要

交通标志的正确识别是智能车辆规范行驶、道路交通安全的前提;为解决智能车采集目标图像模糊、分辨率低,造成识别精度低且时效性差的问题,构建一种基于级联深度网络的交通标志识别模型,该模型级联超分辨率处理网络ESPCN与目标检测识别网络RFCN,ESPCN网络提高输入采集图像的分辨率,为低分辨率图像实现超分辨率处理,RFCN网络提取图像全局特征,实现交通标志的检测与分类识别;平衡采样及多尺度的训练策略结合数据增强的预处理方法,增强了网络模型的鲁棒性及扩展性;经实验验证,算法模型针对常见交通标志识别率达到98.16%,召回率达到96.2%,且鲁棒性较好。

全文