摘要
本发明属于信息安全技术领域,公开了一种安全多方贝叶斯分类器生成系统及方法,包括系统初始化,密钥分发中心生成系统安全参数、分布式数据加密密钥和聚合数据解密密钥;本地训练数据加密,并将加密之后的数据发送给模型生成方;模型生成方对收到的各密文训练数据进行聚合计算,生成密文全局训练数据,并使用聚合数据解密密钥对密文全局训练数据进行解密,获取贝叶斯分类器训练参数;贝叶斯分类模型生成方利用获取的贝叶斯训练参数计算相应的条件概率与前验概率,生成贝叶斯分类器。本发明可用于分布式场景中贝叶斯分类器的生成与训练,能够在确保模型生成方获取高精度贝叶斯分类器的同时,实现对多数据中心敏感数据的安全聚合与隐私保护。
- 单位