摘要

水稻病害类型多,采集过来的图像病斑交界特征复杂多变。即便同类别水稻病害在不同的生长时期,发生在叶片、茎秆、穗部等部位呈现的病斑特征也不一样,而且不同类型病害也存在相似病斑,这些都给水稻病害图像的精准识别带来了相当大的困难。采用深度卷积神经网络模型,使用数据集扩增技术,运用fine-tune方法对网络进行调参及构建,将自然场景下采集的常见8类水稻病害图像输入网络模型中进行训练和测试,在有限的图像数量下取得较高的识别精度,其中纹枯病的准确率为93%。不同于其他方法仅聚焦在水稻叶部或稻穗部,本文识别的图像是多株水稻的场景,可为水稻病害远程自动诊断提供关键技术支持。

  • 单位
    数理学院; 流域生态与地理环境监测国家测绘地理信息局重点实验室; 井冈山大学