摘要

为了实现企业产品销量预估,提高生产供应的准确性与效率,提出了基于Stacking模型的融合算法进行销量预测。算法设计了两层堆叠的模型结构,初级学习器采用随机森林、支持向量回归、差分整合移动平均自回归、轻量级梯度提升机器和门控循环单元5种单模型,将分类与回归树作为次级学习器构成Stacking融合模型,并对数据进行了预测。预测结果显示,使用Stacking模型融合后得到了较好的预测结果,比单模型中效果最好的模型的均方根误差更小,平均绝对误差更小,决定系数值更大,表明Stacking融合模型的预测准确率更高。所设计模型可用于对企业店铺的产品销量进行预测,帮助企业更好地安排生产、营销活动,为减少库存、缩短生产销售周期提供数据支持,对企业生产决策有一定的参考价值。