摘要

本发明公开了一种基于对比学习与StyleGAN2的近红外-可见光人脸图像合成方法,其步骤包括:1、收集成对的近红外-可见光人脸图像并进行统一的人脸检测和归一化的预处理,从而获得数据集图像;2、引入对比学习机制,构建包含基于StyleGAN2结构的生成器、判别器、图像多层特征提取块在内的生成网络模型;3、结合适当的损失函数和优化函数,利用训练集图像训练生成网络模型;4、输入待测的近红外人脸图像对生成网络模型进行测试,最终合成相应的可见光人脸图像。本发明能使得合成的可见光图像更加贴近真实图像,能够更好地还原人脸图像的面部边缘细节和肤色信息,从而提高合成图像的视觉效果和跨模态人脸识别的性能。