摘要
实体解析致力于识别多条记录是否描述真实世界相同实体,这是数据清洗和数据集成中的关键问题.近年来,基于深度学习的实体解析广受欢迎,它们需要大量标注数据才能达到较优的效果.然而,在现实场景中,大量高质量标注数据不容易获得.本文提出了一个基于深度迁移学习的实体解析模型,通过域分离网络提取源域和目标域的公共特征,并利用公共特征得到实体解析结果,从而实现从源域到目标域的迁移.实验结果表明,在多个数据集上,本文提出的方法比之前最好的方法在F1度量上最大提高了40%左右.实验证明本文的方法具有更好的表现,并且训练时间更短.
- 单位