摘要
识别多尺度目标是检测任务中的一项挑战,针对检测中的多尺度问题,提出自适应上下文特征的多尺度目标检测算法。针对不同尺度的目标需要不同大小感受野特征进行识别的问题,构建了一种多感受野特征提取网络,通过多分支并行空洞卷积,从高层语义特征中挖掘标签中的上下文信息;针对不同尺度目标的语义特征出现在不同分辨率特征图中的问题,基于改进的通道注意力机制,提出自适应的特征融合网络,通过学习不同分辨率特征图之间的相关性,在全局语义特征中融合局部位置特征;利用不同尺度的特征图识别不同尺度的物体。在PASCAL VOC数据集上对本文算法进行验证,本文方法的检测精度达到了85.74%,相较于Faster RCNN检测精度提升约8.7%,相较于基线检测算法YOLOv3+提升约2.06%。
- 单位