摘要
流行度-生成度随机块(popularity-productivity stochastic block,PPSB)模型能发现网络广义社区,但该模型易过拟合,且不能有效处理大规模网络,故提出一个3层贝叶斯网络广义社区发现(generalized PPSB,GPPSB)模型,并给出实现大规模链接网络和内容网络广义社区发现的随机变分推理(stochastic variational inference,SVI)算法GPPSB-SVI和GPPSB-C-SVI。不同规模人工网络和实际网络上的实验结果表明:GPPSB-SVI准确性优于已有流行大规模网络社区发现算法,效率高于基于PPSB模型的广义社区发现算法;GPPSB-C-SVI准确性优于GPPSB-SVI算法;GPPSB模型引入节点隶属度和类间链接概率矩阵的先验分布,可更好地对网络建模,其参数估计算法GPPSB-SVI、GPPSB-C-SVI可更有效地实现大规模网络广义社区发现。
-
单位河北地质大学