大规模的工业过程具有动态的特性,主元分析只关注方差最大化,没有很好地解决处理样本的数量以及样本成分是否包含动态特性,所以主元分析不适合直接应用于动态过程的故障检测。因此,提出一种在线压缩主元分析的自适应故障检测方法。在大量的样本中提取一组极具代表性的样本进行压缩数据建模,对于在线实时采集的数据,根据信息是否符合添加要求进行判断,并自动更新监控模型。将该方法应用于田纳西-伊斯曼过程,使用T2进行验证分析,仿真结果表明,所提出的故障检测方法是有效性。