摘要
针对萤火虫算法在求解高维复杂函数时存在的收敛速度慢、寻优精度低和易陷入局部最优等缺点,提出一种融合多策略的萤火虫算法(IMSFA)。首先,利用混沌映射和动态对立学习策略优化初始种群,加快算法的收敛速度;其次,对个体的移动策略进行多样化设计,降低算法陷入局部最优的概率,提高算法的寻优精度;最后,对超出解空间的个体使用归优边界限制策略,保证算法可以朝着一个较优的方向进行搜索。在8个基准函数上对IMSFA进行优化测试,并使用Wilcoxon秩和检验对其进行评估,结果表明,IMSFA在收敛速度、搜索精度、克服局部最优和寻优稳定性方面有着出色的表现。
- 单位