NIR高光谱成像技术联用SPA算法快速检测五花肉的过氧化值

作者:何鸿举; 王洋洋; 王魏; 蒋圣启; 朱亚东; 马汉军; 陈复生; 朱明明; 赵圣明
来源:食品工业科技, 2020, 41(08): 236-241.
DOI:10.13386/j.issn1002-0306.2020.08.037

摘要

利用近红外(NIR)高光谱成像技术结合连续投影算法(SPA)快速、无损检测五花肉的过氧化值。通过高光谱成像系统采集样品的光谱图像,提取其反射光谱信息,经过基线校正(BC)、高斯滤波平滑(GFS)、中值滤波平滑(MFS)、卷积平滑(SGS)、移动平均值平滑(MAS)、标准正态变量变换(SNV)、多元散射校正(MSC)七种预处理后,利用偏最小二乘(PLS)建立预测模型。使用SPA筛选最优波长,重新预算,构建优化的PLS模型和多元线性回归(MLR)模型。结果显示,经过BC预处理(RP=0.960,RMSEP=5.15×10-4g/100 g)和原始数据RAW(RP=0.960,RMSEP=4.89×10-4g/100 g)的全波段PLS模型(F-PLS)预测过氧化值效果较好。优化结果显示,RAW的MLR模型(RP=0.968,RMSEP=4.12×10-4 g/100 g)预测效果更好。研究表明,NIR高光谱成像技术联用SPA算法可潜在实现对五花肉过氧化值的快速无损检测。