摘要

本文运用全局分歧定理研究了一阶泛函微分方程u’(t)-a(t)u(t)+λg(t)f(u(t-τ(t)))=0,t∈R正T-周期解的存在性,其中λ>0是参数,a∈C(R,[0,∞)),g∈C(R,[0,∞))且a?0,g?0,τ∈C(R,R),a,g,τ都是T-周期函数,f∈C([0,∞),[0,∞)).本文构造了该方程正T-周期解的全局结构,获得了方程正T-周期解的存在性.