摘要
为解决基于类属属性的多标签分类算法(multi-label classification with label specific features,LIFT),在类属属性构造过程中未考虑数据间的相互作用且未利用近邻集合的特征和标签信息的问题,提出基于引力模型的类属属性多标签分类算法G-GMLIFT (global-gravitation model based label specific features)和L-GMLIFT (local-gravitation model based label specific features)。结合引力模型,利用近邻集合的特征和标签信息,构成基于相互作用的类属属性空间,度量数据间的相互作用。仿真结果表明,与现有方法相比,所提算法具有较好的分类性能。
- 单位