摘要

针对货车运行故障动态图像检测系统(Trouble of moving Freight car Detection System,TFDS)中存在的列车图像曝光不足、对比度低以及边缘细节模糊的问题,提出了图像边缘增强与麻雀搜索算法相结合的TFDS图像预处理方法。首先,利用高斯-拉普拉斯算子对图像进行边缘检测与锐化处理,增强列车零部件边缘细节清晰度;其次,利用麻雀搜索算法寻找非完全Beta函数的最佳参数;最后,实现低照度图像的自适应增强。实验结果表明:该方法在信息熵、平均梯度以及对比度等方面优于TFDS图像预处理常用算法。