为减少不均衡数据对支持向量机分类性能的影响,提出一种基于二次支持向量机的欠取样分类算法,该算法依据样本的分类超平面贡献大小对多数类样本进行欠取样,并对少数类样本进行过取样,重构训练数据集。该算法能够删除样本中的噪声数据,用控制参数控制删除样本的规模,实验表明,该算法能够提高支持向量机在不均衡数据集下的分类性能。