摘要

目的利用低秩矩阵恢复方法可从稀疏噪声污染的数据矩阵中提取出对齐且线性相关低秩图像的优点,提出一种新的基于低秩矩阵恢复理论的多曝光高动态范围(HDR)图像融合的方法,以提高HDR图像融合技术的抗噪声与去伪影的性能。方法以部分奇异值(PSSV)作为优化目标函数,可构建通用的多曝光低动态范围(LDR)图像序列的HDR图像融合低秩数学模型。然后利用精确增广拉格朗日乘子法,求解输入的多曝光LDR图像序列的低秩矩阵,并借助交替方向乘子法对求解算法进行优化,对不同的奇异值设置自适应的惩罚因子,使得最优解尽量集中在最大奇异值的空间,从而得到对齐无噪声的场景完整光照信息,即HDR图像。结果本文求解方法具有较好的收敛性,抗噪性能优于鲁棒主成分分析(RPCA)与PSSV方法,且能适用于多曝光LDR图像数据集较少的场合。通过对经典的Memorial Church与Arch多曝光LDR图像序列的HDR图像融合仿真结果表明,本文方法对噪声与伪影的抑制效果较为明显,图像细节丰富,基于感知一致性(PU)映射的峰值信噪比(PSNR)与结构相似度(SSIM)指标均优于对比方法:对于无噪声的Memorial Church图像序列,RPCA方法的PSNR、SSIM值分别为28. 117 d B与0. 935,而PSSV方法的分别为30. 557 d B与0. 959,本文方法的分别为32. 550 d B与0. 968。当为该图像序列添加均匀噪声后,RPCA方法的PSNR、SSIM值为28. 115 d B与0. 935,而PSSV方法的分别为30. 579 d B与0. 959,本文方法的为32. 562 d B与0. 967。结论本文方法将多曝光HDR图像融合问题与低秩最优化理论结合,不仅可以在较少的数据量情况下以较低重构误差获取到HDR图像,还能有效去除动态场景伪影与噪声的干扰,提高融合图像的质量,具有更好的鲁棒性,适用于需要记录场景真实光线变化的场合。