摘要
针对地铁钢轨波磨问题,采用粒子群优化算法对概率神经网络进行优化,提出粒子概率神经网络(PPNN)算法.使用PPNN算法在一定数值范围内对概率神经网络的平滑因子进行随机初始化,为了保证算法的全局搜索能力和计算效率,选用凹函数递减惯性权值实现平滑因子的更新迭代,得出分类准确率最高的平滑因子最优解.为了说明PPNN算法的有效性,对钢轨粗糙度以及车内噪声进行现场测试,提取与钢轨波磨相关的车内噪声特征,分析该算法的种群规模和进化次数对波磨识别准确率的影响,对比不同智能分类算法的识别效果.结果表明:与地铁钢轨波磨相关的车内噪声特征为315、400、500、630、800、1 000 Hz中心频率处的A计权声压级;相比于决策树、高斯朴素贝叶斯、支持向量机、K近邻等主流智能分类算法,PPNN算法具有显著的优势,其波磨识别准确率达到98.582%.
-
单位北京交通大学; 建筑工程学院