摘要
随着热工建模过程中参数的增多,根据参数之间的相关性进行分块建模成为降低模型复杂度、提高模型监测效果的有效手段之一。因此提出了一种基于互信息的自动聚类、分块建模方法。首先,获取参数之间的互信息矩阵,在此基础之上以训练数据的平均平方预测误差最小为标准,使用谱聚类算法对参数进行自动聚类。然后,分别建立每个子块对应的主成分分析(Principle component analysis, PCA)模型,并将所有子块的建模结果通过贝叶斯理论进行融合来对多个子块模型进行统一监测。最后,采用基于最小角度回归(Least angle regressions, LARS)的故障诊断方法定位故障发生的方向和幅值。通过数学案例的验证和电厂高温再热器的实际应用,表明了所提方法在故障监测和诊断方面的有效性。
- 单位