基于两点模型选择的离线数据驱动进化优化算法主要用于解决目标计算复杂度高的离线优化问题.在模型建立过程中,建立多个代理模型,而后运用模型选择策略,从中选择部分代理模型,组成集成模型.同时,模型选择策略概率被采用,用来提高算法通用性和减少时间复杂度.该算法在常见的基准测试函数上进行了数值实验,与其他先进的算法进行了比较,实验结果表明,新算法更具有优势.