基于SVM的高校考研预测模型研究

作者:张凯; 闫立强; 刘畅; 杜亚冰*
来源:河南城建学院学报, 2021, 30(06): 86-92.
DOI:10.14140/j.cnki.hncjxb.2021.06.013

摘要

选择适合的特征子集和预测算法用于考研结果或考研成绩预测,在机器学习领域中受到研究者的青睐。影响报考决策和考研结果的因素很多,虽然采用小样本或者范围较大的特征子集,可以获得精度较高的预测结果,但较难保证预测模型的实用性和泛化能力。论文提出一种基于SVM的高校考研预测模型,该模型面向高校所有理工科本科生,以高考成绩和在校原始成绩作为特征子集,并构造三种样本集,分别采用内积核函数、径向基核函数和多项式核函数训练SVM模型。通过与Logistics算法、k NN算法进行训练建模对比测试后,发现本文的预测模型在考研报考决策场景下,具有较高的适应能力和稳定性,对学校鼓励考研和学生制定考研决策具有较高的实用性。

  • 单位
    河南城建学院