针对短文本信息量少、特征稀疏的特点,提出一种基于LDA主题扩展的多类SVM短文本分类方法。在短文本基础上,利用LDA主题模得到文档的主题分布,将主题中的词扩充到原短文本的特征中,在特征空间上使用基于经典权重计算方法的多类SVM分类器进行分类。实验结果表明,在各个类别上的查准率、查全率和F1值都有所提高,验证了该方法的可行性。