摘要

在红外目标识别领域,基于卷积神经网络的深度学习算法的识别精度已远远超过了传统模式识别算法,但神经网络的实现需要依赖庞大的计算和存储能力,难以在无人机等嵌入式平台上进行部署。针对此问题,将通道级量化策略和梯度的近似优化训练引入到了低比特神经网络模型的建立中,并提出了一种可充分利用硬件计算资源的FPGA加速器,其整体平均性能为65.6GOPS。与其他相关工作的对比表明,低比特量化方法及其FPGA加速器的实现,可以为嵌入式红外目标识别系统提供一种能效高、识别精度高的解决方案。