摘要
为了提高遥感图像场景分类中特征有效利用率,进而提高遥感影像分类精度,采用基于双通道深度密集特征融合的遥感影像分类方法,进行了理论分析和实验验证。首先通过构建复合密集网络模型,分别提取图像卷积层特征和全连接层特征;然后为挖掘、利用图像深层信息,通过视觉词袋模型将提取的深层卷积层特征进行重组编码,捕获图像深层局部特征;最后采用线性加权方式将局部和全局特征融合、分类。结果表明,选用数据集UC Merced Land-Use和NWPU-RESISC45进行实验,取得的分类精度分别为93.81%和92.62%。该方法充分利用局部特征和全局特征的互补性,能实现图像深层信息的充分利用和表达。
- 单位