摘要
本文利用地基激光雷达实现天然林区近地面点云数据的精细分类和倒木提取。对大兴安岭天然林区的3个倒木样地进行了近地面1.3 m以内点云精细分类和倒木信息提取。为避免点云密度差异和遮挡的形态特征,点云分类时基于自适应临近搜索法计算团块协方差特征值构造3D和2D特征。使用k临近递增的团块协方差特征值得到的线性特征、面状特征和发散状特征构造最大熵函数,用最大熵函数取得最大值时的临近点云计算特征参数,根据递归特征排除法(RFE)筛选重要变量进行随机森林分类。利用自适应kNN特征得到3块研究样地(A、B、C)的分类总体精度分别为93.17%、94.52%、95.16%;固定k临近搜索时,总体精度分别为92.65%、89.09%、92.99%,表明自适应kNN搜索方法使分类精度有一定提高。提取倒木点云去噪处理后进行随机抽样一致圆柱拟合,根据轴线方向进行圆柱的筛选与合并,实现倒木的识别,样地倒木识别率为100%。
-
单位中国林业科学研究院资源信息研究所