摘要

为提高无人船在执行水质采样任务时的路径规划效率,提出一种结合蚁群算法和萤火虫算法的路径规划算法。首先,在构建最短采水路径网络时,将转向角代价启发函数引入传统蚁群算法,减少路径搜索结果中的频繁转向;其次,剔除搜索结果中的冗余结点,进一步减少无人船转向次数,使所求得路径更适用于无人船实际航行。最后,在求解最优采样顺序时,基于随机修正的方式设计了一种改进的萤火虫算法,提升了算法的收敛速度。仿真实验结果表明,本文所设计算法能够完成水质采样任务路径规划任务,相比传统算法,搜索效率更高,有效缩短了总路径长度。

全文