摘要
为了进一步利用源文本数据来提高语音翻译的性能,本文提出了一种基于生成对抗网络的端到端语音翻译算法。通过加入判别网络来判断语音特征序列和文本特征序列的真伪,从而引导生成模型来学习文本真实序列的分布,以使语音序列特征分布更加逼近文本特征序列的分布。引入了Wasserstein GAN(WGAN)来计算语音特征序列和文本特征序列通过判别器的标量似然值的Earth-Mover(EM)距离,来解决语音特征序列和文本特征序列存在长度不一致的问题。整个模型遵从多任务学习和对抗学习的训练准则,本文在How2数据集上和MuSTC英中数据集上验证了本文提出算法的有效性,该方法可以显著提升翻译质量。
- 单位