摘要
由于健康指标权重随机性会导致风电机组状态评估灵敏度降低,提出一种评估风电机组健康状态的随机组合赋权模糊评价方法。首先,通过相关性、方差、偏度等多角度分析风电场采集与监视控制系统(SCADA)数据,结合IEC61400-1标准建立机组健康状态评估指标架构,并基于随机因子优化组合权重得到赋权公式,提高评估指标层权重的准确性。其次,为充分覆盖评估指标数据劣化度,基于岭型分布函数建立健康指标劣化隶属度计算函数。结合随机组合权重和隶属度函数,构建风电机组健康状态模糊综合评价数学模型。通过分层评估风电机组健康状态指标架构,得到机组健康等级并实现故障预警。最后,对大连驼山风电场多台机组进行评估试验,结果表明:该文方法能准确评估出风电机组健康状态等级,相比组合赋权云模型方法,灵敏度提高了1.85%。
-
单位沈阳工业大学; 国网天津市电力公司检修公司; 中国人民解放军装备学院