摘要

作物病害图像分割是利用数字图像处理技术进行病害识别的关键性技术环节之一,现有病害分割方法存在病害区域外部形态特征细节保留程度差和颜色纹理信息丢失等问题。针对上述问题,提出一种基于改进遗传算法的脉冲耦合神经网络分割方法。首先改进遗传算法,以信息熵的加权线性组合作为优化适应度函数用以在每次迭代过程中评价脉冲耦合神经网络对于病害区域的分割效果,通过计算种群适应度方差和适应度均值自适应调整遗传算法的交叉概率和变异概率;然后将改进遗传算法与脉冲耦合神经网络相结合,实现网络连接系数、衰减系数和幅值系数的自动优化调节;最后利用改进遗传脉冲耦合神经网络分割算法,在RGB子空间分别对病害图像进行病害区域分割,将...

全文