摘要
果穗检测是农业自动化采摘作业的热门关键技术。针对成熟期葡萄易腐烂、成熟状况不一,以及葡萄果园背景复杂、光照条件多变的问题,基于YOLO v5s算法提出一种轻量化改进的检测识别方法。首先,采用Efficientnet-v2网络作为特征提取主干并在其中融合了不降维局部跨信道交互模块,在保障精度的前提下大幅度缩减模型大小以及参数量,加快模型推理速度;其次,为了进一步弥补模型简化造成的精度损失,在模型特征融合关键位置引入坐标注意力模块,强化对目标的关注度,提升模型应对密集目标检测以及对抗复杂背景干扰的能力,保障算法的综合性能及可靠性。实验结果表明:改进后的算法平均准确率达98.7%,平均检测速度为0.028 s,模型大小仅为12.01 MB,相较于改进前的算法准确率提升了0.41%,检测速度快了22%,模型减小了13.2%。在果园场景图像检测测试中,所提出算法能够良好地检测出葡萄果穗并辨别其状况,对不同环境影响也具有较强适应能力,为自动化采摘技术的发展提供了参考。
- 单位