摘要

点云分类和分割是三维场景理解中的关键步骤。针对稀疏点云输入和遮挡不能有效识别点云的问题,提出一种改进型分类和分割网络Linked-DGCNN。在动态图卷积网络(DGCNN)的基础上增加EdgeConv卷积层数以提取深层次点云特征;去除DGCNN的转换网络以简化网络结构;引入深度残差网络的思想连接不同网络层的输出特征,形成点云特征,同时使网络训练更加稳定。基于ModelNet40和ShapeNet Parts数据集将该网络与其他点云网络进行对比实验,实验结果表明,该网络在稀疏点云输入和遮挡情况下,相比其他方法有较高的点云分类和分割精度,由此说明该网络具有较强的鲁棒性。