摘要

Electrodes consisting of LiNi1/3Co1/3Mn1/3O2, aluminum foil, conductive additives, and polyvinylidene fluoride were coated with a thin graphene oxide layer via a simple screen-printing method. The cycle performance and rate capability were tested at a cutoff voltage of 4.3 V. Results show that the capacity deceases whereas the polarization increases during the galvanostatic chargedischarge tests for primary electrodes. For the graphene-oxide-modified electrodes, the capacity decrement reduces and polarization increment rate evidently slows down. As a result, the cycle stability and rate capability are improved because the graphene oxide coating suppresses the side reactions between the LiNi1/3Co1/3Mn1/3O2 electrodes and electrolyte. The research provides an ecofriendly and highly effective strategy to improve the performance of LiNi1/3Co1/3Mn1/3O2 electrodes.