为有效检测网络的攻击行为,提出了基于机器学习与大数据技术的入侵检测方法。首先分析当前网络入侵检测算法,描述了大数据分析技术的网络入侵原理,然后将GRU神经网络与SVM分类算法相结合,最后使用网络入侵检测数据集进行实验。实验结果表明基于GRU-SVM模型的网络入侵检测成功率高于其他模型,网络入侵检测整体效果得到改善,保证了网络安全。