摘要

车辆类型识别方法是智能交通系统的关键技术之一。利用深度学习的高维特征泛化学习能力,将改进的LeNet-5卷积神经网络用于基于交通微波雷达的大小车型分类识别。首先,以雷达触发前的N帧信号为基础,对雷达的回波信号进行分析并构建数据集;然后,分析LeNet-5卷积神经网络的特点;最后提出一种改进的LeNet-5卷积神经网络。实验结果表明,与传统的支持向量机方法相比,所提方法能够智能学习大小车的雷达时频信号特征,大小车型识别准确率达到97%以上,可为交通场景下的车型识别研究提供新的技术途径。