摘要

精准可靠地预测锅炉NOx排放量对电站锅炉低氮运行有着重要意义,为了提升模型的预测效果,提出一种基于鲸鱼优化算法-最小二乘支持向量机(WOA-LSSVM)的锅炉NOx排放量预测建模方法。首先归一化处理初始样本数据,然后通过WOA算法对LSSVM中的核函数宽度和惩罚因子两个参数进行寻优求解,建立WOA-LSSVM黑箱模型,最终得到模型输出,同时将采用果蝇优化算法(FOA)、粒子群优化算法(PSO)优化参数建立的LSSVM预测模型和单一LSSVM预测模型作为对比研究。仿真结果表明,采用WOA优化的LSSVM模型在NOx排放量预测方面明显优于其他选定模型,具有稳定且较高精度的仿真性能。