摘要

为提高复杂信道环境下无线通信系统对调制信号的检测识别能力,以及针对当前调制识别方法存在的模型复杂、计算量大、输入数据特征不完备等问题。提出一种改进的深度学习算法模型,对真实无线环境下的9种常见调制信号进行识别研究。该算法通过对原始的同相正交(in-phase quadrature, IQ)数据进行幅度相位计算,以此增加模型输入数据的特征信息,采用改进的密集神经网络(dense neural network, DenseNet)对常见调制信号进行识别分类。实验结果表明:在相同的训练数据样本中,相比其他深度学习调制识别算法,改进算法性能最优。在信噪比为0时,DenseNet平均识别率达到84.6%。改进的IQ输入数据明显提高了无线信号的检测识别率,在信噪比为-10 dB和-5 dB时,调制信号的识别率提高了10%。