摘要
为了更加充分地提取调制信号特征,构建一种多通道残差网络与注意力机制协作的调制分类方法。首先设计一个各通道均不相同的多通道结构,确保提取的信号特征更加多样;其次,将每个通道提取的特征利用concatenate层进行融合,增强描述信号特征;之后,结合残差网络的优势,显著增加网络深度,捕获更具代表性的特征,同时缓解深层网络带来的梯度消失问题;最后,为了使提取的特征更加易于分类,引入注意力层,对提取特征重新校准,以捕获更加关键的特征,增加信号分类准确率。在公共数据集RadioML 2016.10 b上进行实验。仿真结果表明,该网络的分类性能优于许多文献中的分类器,当信噪比14 dB时,分类精度达到93.23%,证明了此网络的可行性与有效性。
-
单位商丘工学院; 电子信息工程学院; 中原工学院信息商务学院; 河南理工大学