摘要

为解决风力机早期轴承故障信号微弱,其非线性及特征量缺失导致故障诊断的困难,基于能量截止法,考虑参数互交性,采用鲸鱼算法获取最优参数组合,提出优化改进变分模态分解方法(WOA-IVMD)将轴承振动信号分解至不同频段;又考虑信号非线性,通过9种非线性特征参数,基于经WOA-IVMD分解分量构建非线性"复合高维"特征矩阵,为避免高维数据导致维数灾难问题,采用随机近邻嵌入理论(t-SNE)对高维特征矩阵进行降维处理,并以降维所获数据作为测试样本,通过神经网络完成轴承工作状态分类。结果表明:WOA-IVMD分解信号具有与原分量更高的相似度;采用t-SNE对非线性"复合高维"矩阵进行降维,其三维流形表现具有突出的分类效果;以降维数据为测试样本,采用神经网络进行学习建模并分类,其结果具有较高的吻合度,表明提出方法可准确进行轴承状态分类。

全文