摘要

针对目前对风速序列短期预测中不同组合算法预测精度较差、适应性不强等问题,提出一种基于小波变换的组合预测模型算法,将风速序列经小波变换降低波动性与无序性,利用混合蛙跳算法(shuffled frog leaping algorithm, SFLA)优化逆向传播(back propagation, BP)神经网络的初始权值与阈值,将差分进化(difference evolution, DE)算法用于混合蛙跳算法子种群个体寻优策略,提高个体收敛速度与精度。通过将经小波变换分解得到的高、低频分量分别经组合模型算法进行风速预测与重构,通过实例验证,10、30 min相较60 min预测结果平均绝对百分比误差分别提高33.59%、12.21%,均方根误差分别提高28.77%、8.22%,三者平均预测误差分别为0.037、-0.014、0.011 m/s,与混合蛙跳-BP神经网络算法、BP神经网络算法横向对比,结果表明所提组合预测模型算法预测性能指标最佳。

  • 单位
    中国大唐集团科学技术研究院有限公司